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A theory of the strength of orthotropic materials subjected to combined stresses, 
based on the Henky-von Mises theory of energy due to change of shape, is 
presented. When this theory is applied to macroscopically isotropic materials, 
it yields the diagram currently used in design with metals. Equations relating 
the strength of orthotropic materials subjected to a single stress at angles 
to the natural axes of the material are deduced from the theory, 
equations are shown to agree with available test values. 

These 

Introduction 

The most common orthotropic material (that is, a material which has different 
mechanical properties in the directions of three mutually perpendicular axes-- 
called the natural axes) is wood. Plywood can be considered to be orthotropic 
under certain conditions. Paper and paper laminates are also orthotropic. 
Resin laminates made of sheets of woven glass fiber, as used in radomes of 
aircraft, are also orthotropic, as are most of the core materials used in 
sandwich panels in the construction of high-speed aircraft. 

To obtain rational designs of structures made of these materials, it is necessary 
to have knowledge concerning their strength when they are subjected to combined 
stresses. Further, if they are subjected to a single stress at angles to their 
natural axes, this stress is resolved into components associated with the natural 
axes and acts as a set of combined stresses. This fact was pointed out by 

1 This report is one of a series prepared and distributed by the Forest Products 
Laboratory under U.S. Navy, Bureau of Aeronautics Order No. NBA-PO-NAer 00854 
and USAF-PO- (33-038)49-4696E. Results here reported were obtained during 
1950. 

2 Maintained at Madison, Wis., in cooperation with the University of Wisconsin. 
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3 C. F. Jenkins ( 7 ) in 1920. 
loaded by a single stress the stress is resolved into the stresses associated 
with the natural. axes, and that the strength of the material is reached when 
any one of these resolved stresses reaches its maximum value, as determined 
by tests in which that component of the single stress is applied alone. This 
method was overlooked by previous investigators ( 5 , 6 ) in the field. 

In 1920, a number of investigators ( 2 , 4 , 10 , 21 ) became interested in the com- 
pressive strength of wood at an angle to the direction of the grain. During 
this same time, tests wore being carried out by the Material Section of the 
Air Service under the direction of R. L. Hankinson ( 26 ). These tests led to 
an empirical formula known as the Hankinson formula, which is now in general 
use. 

The Hankinson formula does mot contain the shear strength of the wood but merely 
the compressive strengths parallel and perpendicular to the grain of the wood. 
The compressive strength perpendicular to the grain is difficult to determine 
because, as the load is increased, the wood will crush down and the load will 
increase indefinitely, reaching a value of about 10,000 pounds per square inch 
when the volume of the wood is reduced to about one-half its original volume. 
R. C. Rowse ( 20 ) avoided this difficulty by applying the Hankinson formula to 
proportional limit stresses rather than to strengths. 
Hankinson formula fitted his experimental data reasonably well. 

In 1928, W. R. Osgood ( 19 ) analyzed much of the available experimental data 
and pointed out that if a formula is fitted to this data it should contain a 
means of adjusting the strength in the neighborhood of 45°. He suggested an 
empirical formula that made such adjustment possible. 

The author ( 13 ) roughly applied the Henky-von Mises theory ( 11 , 12 ) of constant 
energy due to change of shape to wood, and pointed out that the Hankinson 
fromula tacitly assumes a relation between the shear strength (associated with 
the natural axes) and the two compressive strengths. 

During the Second World War, this matter again became important in connection 
with the use of plywood and other orthotropic materials in aircraft construction. 
The author ( 15 ) suggested the use of an interaction formula, which again brought 
in the influence of the shear strength associated with the natural axes of the 
material. This empirical formula fitted the experimental data so well that it 
seemed to point to some existing physical mechanism responsible for the 
strength of orthotropic materials. Its form suggested the Henky-von Mises 

He suggested that when an orthotropic material is 

He found that the 

theory. 

In the present report, a theory for the strength of orthotropic materials, 
based upon the Henky-von Mises theory for isotropic materials, is developed by 
a method that is not rigorously correct. The orthotropic materials are 
assumed to be made from an isotropic material by introducing regularly spaced 
voids. The formula obtained is identical to the interaction formula except 

3 Underlined numbers in parentheses refer to literature cited at the end of 
this report. 
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for an added term that has a low value in the range in which tests have been 
made. 
heterogeneously distributed voids, and when so reduced it leads to the criterion 
for failure of metals that is currently in use. 
plywood, and fiberglass 
of the formula, and good agreement is found. 

The formula can be reduced to apply to isotropic materials having 

The results of tests on wood, 
laminate are compared with values obtained by means 

Mathematical Development 

The General Henky-von Mises Theory 

Consider an isotropic material subjected to a stress system. A unit cube 
within the material oriented with respect to an arbitrarily chosen set of 
orthogonal axes, 1, 2, and 3, is shown in figure 1. 
axes of stress and, therefore, the surfaces of the cube are subject to shear 
stresses as well as direct stresses, as shown. 
this cube is determined by replacing the strains by the stresses by use of 
Hooke's law for elastic deformation. 

These axes are not principal 

The energy of deformation of 

E = modulus of elasticity 

G = modulus of rigidity 

s = stress. The subscripts denote directions. Single subscripts denote 
direct stresses, and double subscripts denote shear stresses. 

e = strain. The subscripts denote directions as for stresses. 

v = Poisson's ratio 
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Using these equations the total energy of deformation is: 

The energy of change of volume is: 

The energy of the shear strains does not appear in this equation, because shear 
strains do not change the volume. 

or: 

The energy of change of shape is W s = W - W v 

(4) 

The Henky-von Mises theory assumes that the energy, W s , 
when the proportional limit of the material is reached, no matter what 
combination Of stresses is applied to the material. If stress s l is applied 
alone and given the proportional limit value, p , equation (4) yields: 

has a definite value 

By using this value, equation (4) becomes: 

This equation can be applied at failure for some materials. The octahedral 
shear stress-strain curve ( 11 , 12 ) of such a material is given in figure 2, 
with the proportional limit occurring at point A and failure at point B . 
Suppose the material is to be loaded just short-of failure and the stress then 
released. The stress-strain curve during release of the stress is like BC . 
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On reloading, CB becomes the stress-strain curve, which is a straight line to 
failure. Thus the material, treated in this way, acts elastically to failure 
during the second loading. The condition of the material when point B is 
reached is the same whether the release of stress and the reloading to that 
point take place or not. The energy involved, W s , can be considered to be 

that associated with the reloading. For the material in this condition, the 
proportional limit stress is equal to the stress at failure, and thus equation 
(4a) will apply at failure for such a material. 
substantially in this way ( 11 , 12 , 27 , 29 ). 

Many materials act 

The Formula for Orthotropic Materials 

Now consider an orthotropic material made up of an isotropic material by 
introducing voids in the shape of equal rectangular prisms. The walls of 
isotropic material between these voids are parallel to the 1-2, 2-3, and 3-1 
planes, so that the axes 1, 2, and 3 become the natural axes of the orthotropic 
material. 

Each set of walls is subjected to a two-dimensional stress system, since the 
surfaces of the walls are free from stress. Thus three equations for energy 
due to change of shape are obtained, one for each set of walls. 
are obtained from equation (4). 

These equations 
Thus: 

If it be assumed, for the moment, that the walls between the voids do not 
buckle when they are stressed, the values of the stresses, s , in the isotropic 
walls will be proportional to the values of the gross stresses, f , applied to 
the orthotropic material because of the geometry of the material. These 
proportionalities are expressed by: 
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When a shear stress, say f 12 , is applied alone, the set of walls parallel to 

the 1 and 2 plane are subjected to edgewise shear. The two sets of walls 
perpendicular to these walls are also subjected to shear in the 1 and 2 plane 
where they are joined to the first set of walls (fig. 3). 
of the orthotropic material to the shear stress is greater than that of the 
first set of walls acting alone, This fact is taken into account in the value 
of the ratio r 12 . Further, the second two sets of walls are subjected to some 

bending. The effect of this bending is neglected. 

Substituting the values given by equation (6) in equation (5): 

Thus the reaction 

Now assume that the energy W s has just the value associated with failure of 

the isotropic material. First let all the stresses but f l be zero; then 

in which F 1 denotes the stress at failure obtained from test under this 

condition. Solving this equation for r 1 

Repeating this procedure for the other stresses, the following equations are 
obtained: 
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result: 

Cellular orthotropic materials often exhibit strengths in compression of lesser 
values than those exhibited in tension. This phenomenon is attributed to the 
buckling of the walls between the voids when they are subjected to a compressive 
stress. Figure 3 is a sketch of a single wall with some of the surrounding 
material still attached. 

buckling takes place because the edges of the wall are shortened by these 
stresses. The buckled surface is shown by the dotted lines 
fell on the dash-dot lines 
of the wall, F , remain substantially flat even after buckling occurs. 

The maximum load the wall will carry is attained when the material at the edges 
of the wall fails. Failure will occur at the corners of the wall, for here the 
material is subjected to the combined effect of stresses s 1 and s 2 . 

centers of the edges, at C or E , the effect of one of the stresses is reduced 
because of the buckling of the wall. Failure may take place in these regions 
because of combined compression and bending, but the maximum load on the wall 
as a whole will not be reached until the material at the corners fails. The 
addition of edgewise shear stresses to the wall does not greatly alter this 
situation. 

The wall is buckled by the stresses s 1 and s 2 . This 

COB and DOE before buckling took place. The corners 

At the 
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When these values are substitueted in equation (7) , the following equations 



When the balls buckle, the values of the ratios, r , do not remain constant as 
the mean stresses, f , are increased, however; for any particular orthotropic 
material, there are definite values of these ratios associated with the maximum 
loads the walls will carry, and thus associated with the maximum values of the 
mean stresses, F . When the stress S 1 is applied alone, it can be assumed ( 25 ) 
that the load on the plate is carried by two uniformly loaded strips at the 
edges of the plate, each Of width c 1 as shown in figure 3. The width of these 

strips decreases as the stress is increased and. has a definite value at the 
maximum load. The width of the strips is given by: 

in which h is the thickness of the wall. 
against the ratio of the stress to the modulus of elasticity. 
that at high stresses the width of the strips does not change rapidly with the 
stress. 

range. 
that at failure the magnitude of one of them is in this range and will control 
failure. The addition of a shear stress will not greatly alter this situation, 
because shear stresses are effected only slightly by buckling. 

It follows that equations (8) apply with reasonable accuracy to cellular 
orthotropic materials, even when the walls buckle before the maximum load is 
reached. may 

be different when the mean stress f 1 , f 2 , or f 3 is compressive rather than 

tensile,.. When a mean stress is tensile, the tensile value of the associated 
F should be used; and when it is compressive, the compressive value of the 
associated F should be used. 

Each of equations (8) represents an ellipsoid with its center at the origin. 
These ellipsoids occupy a six-dimensional space. Any condition of stress is 
represented by a point in this space. 
common to all three ellipsoids, the material will not fail. As the stresses 
increase, the point representing them moves outward from the origin, and when 
it reaches the surface of any one of these ellipsoids, the orthotropic material 
will fail. 

Plane stress.--It is difficult to visualize these three ellipsoids in six- 
dimensional space. However, only three dimensions of this space are needed if 
the stress system applied to the orthotropic material is limited to one of the 
natural planes. 
(8) reduce to: 

In figure 4, the radical is plotted 
It is evident 

It will be assumed. that c 1 remains substantially constant in this 

When the stresses s 1 and s 2 are applied together, equation (4a) indicates 

It should be noted, however, that the value of F 1 , F 2 , or F 3 

If the point lies within the volume 

If the plane 1-2 is chosen, f 3 = f 23 = f 31 = 0, and equations 
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These equations define an ellipsoid and four planes in three-dimensional space. 
Two octants of the figure are shown in figure 5. The three parameters 

represented in this figure are , , and f 1 f 2 f 12 
F 1 F 2 F 12 

The boundaries of the ellipsoid in this figure are shown by the curves 

AEDFBJICA. The plane = 1 is shown by DGBD, and the plane = 1 is shown 

by AHDA. If the point representing the stresses is within the solid bounded 
by the ellipsoid and the planes, the orthotropic material will not fail. As 
the stresses are increased, the point representing them moves away from the 
origin. When this point reaches the boundary of the solid, the orthotropic 
material will fail. 

f 2 f 

F 2 F 1 

It can readily be seen that the voids introduced in the isotropic material to 
make the orthotropic material need not be rectangular prisms, but might be 
ellipsoidal or any other shape without disturbing the validity of the theory. 
Also, the voids need not be equal in size nor uniformly spaced or oriented so 
long as, macroscopically, the material is orthotropic 
in which the values of strengths, F , are determined. 
the solid material need not be isotropic but may be aeolotropic. 

Comparison with the interaction equation.--The author has suggested the use 
of an interaction equation to determine the strength of an orthotropic material 
subjected to a two-dimensional stress system ( 15 ). 

because of the manner 
For the same reason, 

This equation is: 

(10) 
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This equation is identical to equation (9) except for the term 

It is represented in figure 5 by the sphere IKBMACI . This sphere lies outside 
the ellipsoid in the left-hand octant and within the ellipsoid in the right- 
hand octant. 
This equation has been checked by tensile, compressive, and shear tests in 
which the stress was applied at angles to one of the natural axes of the 
orthotropic material. 
tensile tests explored the line BLA in figure 5. It is evident from the figure 
that either of equations (9) or (10) should check the experiments very well, 
particularly if the shear strength of the material tested is low. The com- 
pressive tests explored a similar line in an octant not shown in figure 5. 
The shear tests explored the line JC in the figure. 
evident that equation (10) should yield greater values than equation (9). 
These tests are discussed subsequently. 
better than the sphere. 

It intersects the ellipsoid on the lines ICA and CB . 

These tests explored three lines on the ellipsoid, The 

On this line, it is 

The results obtained fit the ellipsoid 

Strength at an Angle to a Natural Axis 

Equation (9) is useful in the determination of the strength of an orthotropic 
material stressed at an angle to the direction of one of the natural axes. 
Consider two orthogonal axes, x and y , at an angle, g , to the natural axes, 
1 and 2 , as shown in figure 6. The stresses associated with these axes are 
f x , f y , and f 

by the transformation equations ( 28 ): 

Then the stresses associated with the natural axes are given xy . 

Tensile strength.--If a tensile stress in the direction x exists alone, then 
f = f = o and equations (11) reduce to: y xy 
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Substituting these values in the first of equations (9) and replacing f x by 

F x to denote failure, the following equation results: 

This equation defines the curve BLA in figure 5. The exact position of this 
curve depends upon the ratio of F 1 to F 2 ; however, the curve passes through 

points The curve shown is the one for 
this ratio equal to unity. 

Compressive strength.--Equations (13) can be used, also, for a compressive 
stress at an angle to one of the orthotropic axes if the associated values of 
F 1 and F 2 are employed. 

Shear strength.--If a shear stress associated with axes x and y exists alone, 
then f x = f y = 0 and equations (11) reduce to 

A and B for all values of this ratio. 

Substituting these values in the first of equations (9) and replacing f by xy 
to denote failure, the following equation results: F xy 

It should he remembered that one of the strengths F 1 or F 2 is a compressive 

strength and should be given the proper value. 
JC in figure 5. 

F 2 . 
this ratio. The curve show. is the one for this ratio equal to unity. 

This equation defines the curve 

It always passes through point C , hut the position of point J depends upon 

This curve moves according to the value of the ratio of F 1 to 

Compressive strength--specimen restrained.--In a structure or in a test in 
which the orthotropic material is subjected to a single stress f,, the stresses 

f y and f xy may not he zero because of the restraint imposed by adjacent members 
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or by the testing machine. This may be true especially if f x is a compressive 

stress. 

values of f y and f xy are not known. However, the maximum possible value of F x 
can be found as follows. 

Let 

The actual value of F x , of course, cannot usually be found because the 

f y = rf x , f xy = Sf x 

Then, equations (11) are written: 

These values are substituted in the first of equations (9) and f x is maximized 

with respect to r and s. This process leads to: 

This value of F x is limited by the second and third of equations (9). 

the second equation in the quadrant shown in figure 5, 
By using 

f2 = F2 

the second of equations (16) becomes 
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By using this equation with the others of equations (16) and again maximizing 
f x as before: 

(18) 

The third of equations (9) applied to the quadrant shown in figure 5 is: 

f 1 = F 1 

Thus the first of equations (16) becomes 

the value of F x is: and 

The proper value of F x is the least value given by equations (17), (18), and 

(19). 
if the proper values of F 1 and F 2 are used. 

The results of tests seldom reach the large values given by formulas (l7), 
(l8), and (19). 
assuming f y = 0 and f xy 
assumed to be zero. This assumption results in: 

These equations can be used for either a tensile or compressive stress 

A better approximation of the test conditions is obtained by 
restrained; thus the value of r in equations (16) is 
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Shear strength--specimen restrained.--An equation for the shear strength when 
the panel is completely restrained can be obtained in a similar way. 
(16) become: 

Equations 

in which 

and 

and the equation resulting from the maximization of f xy with respect to a and 

b is: 

It should be remembered that one of the strengths, F 1 or F 2 , is a compressive 
strength and should be given the proper value. 

Macroscopic Isotropic Materials 

The orthotropic materials discussed have been made by introducing voids into 
and isotropic material. 
isotropic material, the resulting material will be, macroscopically, isotropic. 
The tensile strength of such a material will have the same value no matter 
in what direction the stress is applied. 
the value of F given by equation (13) is independent of q . 

If these voids are heterogeneously dispersed in an 

It follows that F 1 = F 2 = F and that 
This condition is 

x 
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obtained if the right-hand member of this equation is a perfect square. To 
obtain this condition 

or 

This relation can also be obtained directly from the Henky-von Mises theory. 
It is reasonably accurate for most ductile materials. 

For this material, the natural axes, of course, have no meaning and the axes 
of reference can be chosen in any direction. If the axes are chosen in the 
directions of the principal axes of stress, the axis for shear stress is 
eliminated. 
the ellipse determined by the Henky-von Mises theory; however, there is the 
great difference that this ellipse is now cut by the lines 
noteworthy that the ellipse, cut in this manner, agrees very well with the 
results of tests on metals ( 1 , 3 , 8 , 23 , 24 ). 

The ellipsoid in figure 5 becomes the ellipse IJBFDEA, which is 

BD and AD . It is 

Comparison With Experimental Data 

A considerable number of data concerned with the strength of orthotropic 
materials stressed at angles to the natural axes has been obtained. A limited 
number of these data will be used for comparison with the theory developed. 
Those used are taken from Forest Products Laboratory Reports Nos. 1328 ( 15 ) 
on plywood and 1803 ( 30 ) on fiberglass laminate and from Rowse's thesis ( 20 ) 
on Douglas-fir wood. 
tensile, compressive, and shear strengths associated with the natural axes of 
the materials, and these values were used where indicated in the formulas. 
Rowse determined proportional limits rather than strengths, and the theory, 
therefore, does not rigidly apply. 
proportional limit, and it was estimated for the purpose of this comparison. 

The first two reports contain determinations of the 

He did not report the shear stress at 

Plywood 

Tensile tests.--The tensile specimens were 16 inches long, and of the thickness 
of the laminate. 
2-7/8 inches long. 
2-1/2 inches long. 

The maximum sections at the ends were 1-1/2 inches wide and 
The minimum section at the center was 0.8 inch wide and 
The maximum and minimum sections were connected by circular 
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arcs of 20-inch radius tangent to the minimum section. 
described in the reference. 
ply plywood made of 1/16-inch veneers. 
in the formulas are: 

The method of test is 
The data chosen for comparison are those for three 

The strength values for .substitution 

F 1 

F = 6,300 (table 10, Report No. 1328-B) 

F 12 = 1,410 (table 18, Report No. 1328-C ( 18 )) 

= 11,034 (table 10, Report No. 1328-B ( 17 )) 

2 

These values substituted in equation (13) yield the curve shown in figure 7. 
The points shown in the figure represent the average values given in table 10 
of Report 1328-B ( 17 ). 
being long, is not restrained by the grips of the testing machine. Remarkable 
agreement was obtained between the test values and the theory. Perfect agree- 
ment could not be expected because of stress concentrations introduced by the 
shape of the specimen ( 22 ). 

Compression.--The data chosen for comparison with the theory are those obtained 
from tests on three-ply plywood. Compressive specimens have to be comparatively 
short so that they will be elastically stable. They are, therefore, likely to 
be restrained by the testing machine in two ways. The action of Poisson's ratios 
is restrained by friction with the heads of the machine, and shear strains are 
restrained because the heads are guided. This second kind of restraint could 
have been removed by employing rollers, as illustrated in figure 8, instead of 
placing the specimen between the heads, as shown in figure 9. The strength 
values substituted in the equations are: 

Equation (13) was used because a tensile specimen, 

F 1 = 5,125 (table 2, Report No. 1328-A) 

= 2,480 (table 2, Report No. 1328-A) F 2 

F 12 = 1,410 (table 18, Report No. 1328-C) 

These values were substituted in equations (13), (17), (18), (19), and (20), 
and the curves plotted in figure 10 were obtained. 
of compressive strength that the theory predicts if the specimen is not re- 
strained in any way. Equations (17), (18), and (19) yield values consistent 
with complete restraint, and equation (20) yields values consistent with shear 
restraint alone. The plotted experimental values were taken from table 2 of 
Report No. 1328-A ( 16 ) and follow the curve of equation (20) with reasonable 
accuracy. 

Equation (13) yields values 
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Shear.--The apparatus used in making the shear tests on three-ply plywood was 
considered unsatisfactory. 
well with the theory. 
angles are: 

The results of these tests, however, agree quite 
The values substituted in the formulas for positive 

F 1 = 11,034 (tension) (table 10, Report No. 1328-B) 

F 2 = 2,480 (compression) (table 2, Report No. 1328-A) 

F 12 = 1,410 (table 18, Report No. 1328-C) 

and for negative angles: 

F 1 

F 2 

F 12 = 1,410 (table 18, Report No. 1328-C) 

= 5,125 (compression) (table 2, Report No. 1328-A) 

= 6,300 (tension) (table 10, Report No. 1328-B) 

These values were substituted in equations (15) and (22), and the curves plotted 
in figure 11 were obtained. The plotted points represent the average values 
fa three-ply plywood given in table 18, Report No. 1328-C (18). 

Some shear tests were made on five-ply yellow-poplar plywood (1/16-inch 
veneers) with a better apparatus. 
comparison with the tests are for positive angles: 

The values substituted in the formulas for 

F 1 = 10,241 (tension) (table 11, Report No. 1328-B) 

F 2 = 2,760 (compression) (table 3, Report No. 1328-A) 

F 12 = 1,460 (table 20, group 3, Report No. 1328-C) 

and for negative angles: 

F 1 

F 2 

= 4,230 (compression) (table 3, Report No. 1328-A) 

= 7,255 (tension) (table 11, Report No. 1328-B) 
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F 12 = 1,460 (table 20, group 3, Report No. 1328-C) 

These values were substituted in equations (15) and (22), and the curves were 
plotted as shown in figure 12. 
are obtained from table 20 (group 3) of Report No. 1328C ( 18 ). 

In both of these figures (11 and 12) the experimentally determined points lie 
between the curves representing restraint-free and fully restrained tests. 
Pure shear is difficult to obtain in a test. , Part of this difficulty is explained 
by the great distances between some of the curves for unrestrained and completely 
restrained test conditions. 

The experimental values plotted in this figure 

Glass Fabric Laminate 

Glass fabric laminate 143-114 was chosen for comparison with the theory because 
of its marked difference in directional properties. Most of the glass fibers 
in the cloth from which this laminate was made ran in one direction, and the 
cloth layers were oriented so that this direction was common to all the layers. 
The values used in the formulas and for comparison with the theory are taken 
from Forest Products Laboratory Report No, 1803-A ( 31 ), table 5. 

Tension,--The values for substitution in the equations are: 

F 1 = 87,320 

F 2 = 9,880 

F 12 = 11,230 

These values were substituted in equation (13), and the curve was plotted in 
figure 13, 
table 5, column 7, of Report 1803-A. 
the theory. 

Compression.--The values for substitution in the equations are: 

The experimental values plotted in this figure were obtained from 
Remarkable agreement is obtained with 

F 1 = 56,800 

F 2 = 20,950 

F 12 = 11,230 
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These values were substituted in equation (13), and the curve was plotted as 
shown in figure 14. 
from table 5, column 13, of Report 1803-A. The specimens were 1 inch wide 
and 4 inches long arid were supported against elastic instability as shown in 
figure 3 of Forest Products Laboratory Report No. 1803. Good agreement is 
obtained between the experimental values and equation (13), as is shown in 
figure 14. 
greatly restrained by the testing machine. 

Shear.--The values for substitution in the equation for positive angles are: 

The experimental values plotted in this figure are taken 

It can be assumed, therefore, that this type of specimen is not 

F 1 = 87,320 (tension) 

F 2 = 20,950 (compression) 

F 12 = 11,230 

and for negative angles they are: 

F 1 = 56,800 (compression) 

F 2 = 9,880 (tension) 

F 12 = 11,230 

These values were substituted in equation (l5), and the resulting curve was 
plotted as shown in figure 15. 
are taken from table 5, column 18, of Report No. 1803-A. 
values, except one, lie below the curve. The lowest one is about 28 percent 
below the theoretical value. It is possible that stress concentrations due to 
the method of test are responsible for these low values, The test apparatus 
is illustrated in figures 6, 7, and 8 of Report No. 1803. The shear loads are 
applied to the faces of the laminate instead of to the edges. This results 
in a complicated stress distribution at the edges of the part of the specimen 
that is tested. This complicated stress situation may lead to concentrations 
that decrease the load at failure. 

The experimental values plotted in this figure 
All of the experimental 

Douglas-fir in Compression 

The data used for comparative purposes is that of Rowse's thesis ( 20 ). 
proportional limit of the Douglas-fir used by Rowse is not given in his thesis 
and therefore is estimated. Forest Products Laboratory Report No. 1801 ( 14 ) 
presents shear stress-strain curves for a few species of wood, including 

The 
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Douglas-fir. 
stress in shear of Douglas-fir is closely equal to one-half of the shear strength. 
The shear strength of the Douglas-fir used by Rowse is estimated by means of 
U.S. Department of Agriculture Technical Bulletin No. 479 ( 9 ) by using values 
for Rocky Mountain-type Douglas-fir that are closest to those obtained by Rowse. 
The following tabulation shows the known values and those estimated: 

Examination of these curves indicates that the proportional limit 

Values by Values 
Bulletin estimated 

Property No. 479 by Rowse 
(P.s.i.) 

Compression proportional 

Compression proportional limit 
limit stress, parallel 4,660 4,120 

stress, perpendicular 820 773 
Shear strength, parallel 1,070 1,008 

to be 1/2 of shear strength) 535 504 

Shear proportional limit 
stress, parallel (estimated 

The value of shear strength given for the Douglas-fir used by Rowse is estimated 
by use of the ratios of the proportional limit stresses in compression given 
by Technical Bulletin No. 479 to those given by Rowse. 
substituted in the equations are: 

Thus the values to be 

F 1 = 4,120 

F 2 = 773 

These values were substituted in equations (13), (17), (18), (19), and (20), 
and the resulting curves were plotted as shown in figure 16. 
values plotted in this figure were taken from Rowse's thesis. 

The specimens tested by Rowse were notched, as a beam in a truss would be notched 
to receive the end of a diagonal member, and, therefore, were considerably 
restrained by the method of test. The test values lie between the curves for 
shear restraint alone (equation 20) and full restraint (equations 17, 18, and 
19), as might be expected. 

The dashed curve in figure 16 is a plot of the Hankinson equation. 
the experimental data a little better than equation (20) due to the restraint 

The experimental 

It fits 
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imposed on the specimens, 
to the Hankinson equation if 

It might he pointed out that equation (13) reduces 

For these particular data, this relationship yields a value of F 12 = 1,030. 

This value is, of course, too great because it includes the restraint placed 
on the specimen due to the method of test. 

Conclusions 

The experimental values confirm the theory as closely as can be expected. All 
of the tensile tests and the compressive tests on glass fabric laminate confirm 
it with remarkable accuracy. The compressive tests on plywood confirm the 
theory if it is assumed that the testing machine applied shear stresses to the 
specimen, due to friction between the specimen and the heads of the machine. 
The remaining tests agree with the theory as closely as can be expected. 
lack of agreement is probably due to inadequate methods of test. 
confirmation should be obtained by tests imposing combined tensile stress in 
two directions and shear. 

The 
Further 

Literature Cited 

(1) American Society of Metals. 
1948. Fracturing of Metals. 

During the 29th Natl. Metal Cong. and Expo. in Chicago, 
Oct. 1824, 311 pp. 

Seminar on the Fracturing of Metals Held 

Am. Soc. Metals, Cleveland. 

(2) Ayers, Q. C. 
1920. Engin. News-Record. Univ. of Miss. (Sept. 30.) 

(3) Chance Vought Aircraft. 
Verification of Design Allowable Stresses for Panels Under Biaxial 

Compression. Chance Vought Aircraft Rpt. MP-2016. Stratford, 
Conn. 

(4) Dewell, H. D. 

(5) Hare, M. A. 

1920. Engin. News-Record. (Oct. 24.) 

1912. Engin. News. (Aug. 1.) 

(6) Jacoby, H. S. 
1909. Structural Details or Elements of Design in Heavy Framing. Wiley. 

Report No. 1816 -21- 



(7) Jenkins, C. F. 
1920. Report. on Materials of Construction Used in Aircraft and Aircraft 

Engines, 162 pp., illus. H. M. Stationary Off., London, England. 

(8) Marin, Joseph. 
1942. Mechanical Properties of Materials and Design. 273 pp., illus. 

McGraw-Hill. 

(9) Markwardt, L. J., and Wilson, T. R. C. 
1935. Strength and Related Properties of Woods Grown in the United 

States, U.S. Dept. Agr. Tech. Bul. 479, 99 pp., illus. 

(10) Martel, R. R. 

(11) Nadai, Arpad. 

1920. Engin. News-Record. Calif. Inst. Tech. (Nov. 11.) 

1933. Theories of Strength. Trans. Amer. Soc. Mech. Engin. Appl. 
Mechanics 1 (3): 111-129. 

1931. Plasticity. A Mechanics of the Plastic State of Matter. Chapter 
(12) 

13 of Engin. Societies Monog., 349 pp., illus. McGraw-Hill. 

(13) Norris, C. B. 
1939. Elastic Theory of Wood Failure. Trans. Amer. Soc. Mech. Engin. 

61 (3): 259-261. 

, Werren, Fred, and McKinnon, P. F. 
1961. The Effect of Veneer Thickness and Grain Direction on the Shear 

(14) 

Strength of Plywood. Forest Prod. Lab. Rpt. 1801, 30 pp., illus. 

, and McKinnon, P. F. 
Compression, Tension. and Shear Tests on Yellow-poplar Plywood 

(15) 

Panels of Sizes That Do Not Buckle With Tests Made at Various 
Angles to the Face Grain. 
illus . 

Forest Prod. Lab. Rpt. 1328, 26 pp., 

, and McKinnon, P. F. 
Supplement to Compression, Tension, and Shear Tests on Yellow- 
poplar Plywood Panels of Sizes That Do Not Buckle With Tests 
Made at Various Angles to the Face Grain 
Forest Prod. Lab. Rpt. 1328-A, 5 pp., illus. 

(16) 

(Compression Tests). 

, and McKinnon, P. F. 
Supplement to Compression, Tension, and Shear Tests on Yellow- 

(17) 

poplar Plywood Panels of Sizes That Do Not Buckle With Tests 
Made at Various Angles to the Face Grain 
Forest Prod. Lab. Rpt. l328-B, 8 pp., illus. 

(Tension Tests). 

Report No. 1816 -22- 

' ' 

1956. 

1956. 

1956. 



(18) Norris, C. B., and McKinnon, P. F. 
1956. Supplement to Compression, Tension, and Shear Tests on Yellow- 

poplar Plywood Panels of Sizes That Do Not Buckle With Tests 
Made at Various Angles to the Face Grain (Shear Tests). 
Prod. Lab. Rpt. 1328-C, 11 pp., illus. 

Forest 

(19) Osgood, W. R. 
1928. Compressive Stress on Wood Surfaces Inclined to the Grain. Engin. 

News-Record. (Feb. 9.) 

(20) Rowse, R. C. 
1923. The Strength of Douglas-fir in Compression at Various Angles to 

the Grain. Thesis for Degree of Bachelor in Civil Engin. at 
Wash. Univ., St. Louis, Mo. 

(21) Simpson, T. R. 
1920. Engin. News-Record. Univ. of Calif. (Sept. 30.) 

(22) Smith, C. Bassel. 
1949. Effect of Hyperbolic Notches on the Stress Distribution in a 

Wood Plate. Quart. of Appl. Math, 6 (4): 452-56. 

(23) Thomsen, E. G., Lotze, I., and Dorn, J. E. 
1948. Fracture Strength of 755-T Aluminum Alloy Under Combined Stress. 

Natl. Advisory Com. for Aeronaut. Tech. Note 1551, 30 pp. 

, Cunningham, D. M., and. Dorn, J. E. 
Fracture of Some Aluminum Alloys Under Combined Stress. Trans. 

(24) 

Amer. Soc. Mech. Engin. 69 (2): 81-87. 

(25) Timoshenko, Stephen. 
1936. Theory of Elastic Stability. Section on Ultimate Strength of 

Buckled Plates. pp. 395-400. McGraw-Hill. 

(26) U.S. Air Service. 
1921. Investigation of Crushing Strength of Spruce at Various Angles 

of Grain. Air Serv. Inform. Cir. III (259), 15 pp., illus. 

(27) U.S. Forest Products Laboratory. 
1960. Effect of Ten Repetitions of Stress on the Bending and Compressive 

Strengths of Sitka Spruce and Douglas-fir. Forest Prod. Lab. 
Rpt. 1320, 7 pp., illus. 

1957. Stress-Strain Relations in Wood and Plywood Considered as 
(28) 

Orthotropic Materials. Forest Prod. Lab. Rpt. 1503, 33 pp., 
illus. 

(29) Werren, Fred. 
1957. Effect of Prestressing in Tension or Compression on the Mechanical 

Properties of Two Glass-Fabric-Base Plastic Laminates. Forest 
Prod. Lab. Rpt. 1811. 

Report No. 1816 -23- 

1947. 



(30) Werren, Fred, and Norris, C. B. 
1956. Directional Properties of Glass-Fabric-Base Plastic Laminate 

Panels of Sizes That Do Not Buckle. Forest Prod. Lab. Rpt. 
1803, 24 pp., illus. 

(31) 
Supplement to Directional Properties of Glass-Fabric-Base Plastic 
Laminate Panels of Sizes That Do Not Buckle. Forest Prod. 
Lab. Rpt. 1803-A, 7 pp. , illus. 

Report No. 1816 -24- 1.2-41 

1956. 



Figure 1.--Illustration of stresses within a material. 
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Figure 2.--Illustrative stress-strain curve. 
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Figure 3.--A single wall broken from the orthotropic 
material. 
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Figure 6.--Illustration of choice of axes. 
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Figure 8 (top).--Illustration of a method of removing 
shear restraint in a compressive test. 

Figure 9 (bottom) .--Illustration of shear restraint 
in a compressive test. 
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SUBJECT LISTS OF PUBLICATIONS ISSUED BY THE 

FOREST PRODUCTS LABORATORY 

The following are obtainable free on request from the Director, Forest Products 
Laboratory, Madison 5, Wisconsin: 

List of publications on List of publications on 
Box and Crate Construction Fire Protection 
and Packaging Data 

List of publications on 
Chemistry of Wood and 
Derived Products Products 

List of publications on 
Logging, Milling, and 
Utilization of Timber 

List of publications on 
Fungus Defects in Forest 
Products and Decay in Trees 

List of publications on 
Glue, Glued Products 
and Veneer 

List of publications on 
Growth, Structure, and 
Identification of Wood 

List of publications on 
Mechanical Properties and 
Structural Uses of Wood 
and Wood Products 

List of publications on 
Pulp and Paper 

List of publications on 
Seasoning of Wood 

List of publications on 
Structural Sandwich, Plastic 
Laminates, and Wood-Base 
Aircraft Components 

List of publications on 
Wood Finishing 

List of publications on 
Wood Preservation 

Partial list of publications 
for Architects, Builders, 
Engineers, and Retail 
Lumbermen Woodshop Practice 

Partial list of publications 
for Furniture Manufacturers, 
Woodworkers and Teachers of 

Note: Since Forest Products Laboratory publications are so varied in subject 
no single list is issued. 
division. 
showing new reports for the previous six months. This is the only item 
sent regularly to the Laboratory's mailing list. 
for and received the proper subject lists and who has had his name placed 
on the mailing list can keep up to date on Forest Products Laboratory 
publications. Each subject list carries descriptions of all other sub- 
ject lists. 

Instead a list is made up far each laboratory 
Twice a year, December 31 and June 30, a list is made up 

Anyone who has asked 

-40- 


